• Головна / Main Page
  • СТРІЧКА НОВИН / Newsline
  • АРХІВ / ARCHIVE
  • RSS feed
  • Участие мутаций митохондриальной ДНК в старении

    Опубликовано: 2020-11-11 12:48:54

    Важно не количество, а качество
    Еще одно открытие, казалось, не оставило никакой лазейки, будь то порочный круг или нет, для участия мутаций митохондриальной ДНК в старении: реально лишь очень немногие клетки вообще содержат мутантные митохондрии, как передает Интернет-издание для девушек и женщин от 14 до 35 лет Pannochka.net

    Да, у пожилых людей небольшая доля клеток - около 1% - заняты митохондриями со своим дефектом ДНК в каждой; но 99% клеток в этом отношении не страдают.

    Разве может 1% иметь значение?

    Многие биогеронтологи сочли, что эти данные покончили с любыми теориями, утверждающими важность повреждения митохондрий в старении. Если в почти каждой клетке организма сохраняется такой же уровень производства аденозинтрифосфата (АТР), как в молодости, и ущерб от свободных радикалов не больше, чем был в расцвете сил, то вряд ли возможно, чтобы незначительная доля клеток, да еще с низким уровнем энергообеспечения, в митохондриях которых, однако, образуется не больше свободных радикалов, чем в соседних клетках (фактически вообще не образуется), оказывала существенное негативное влияние на функционирование своей ткани или организма в целом. С этой точки зрения теория старения на основе митохондриальных свободных радикалов приказала долго жить.

    Такова была ситуация в середине 1990-х годов, когда выяснилась неудовлетворительность науки о старении. Печальное состояние теории митохондриальных свободных радикалов привело к новому синтетическому подходу. С одной стороны, имелись веские факты в поддержку центральной роли митохондриальных свободных радикалов в старении; с другой стороны, теории порочного круга (в том виде, в каком они были тогда) не согласовывались с новыми данными. Во-первых, удалось объяснить, каким образом в стареющих клетках накапливаются митохондрии, несущие одну и ту же мутацию, а не случайный их набор (что предсказывалось теорией порочного круга); во-вторых, удалось объяснить, каким образом малое число клеток с мутантными митохондриями может двигать старение организма в целом. Давайте рассмотрим эти аспекты по очереди.
    Выживание худших
    По теории порочного круга в каждой митохондрии на протяжении ее существования медленно накапливаются небольшие случайные изменения. Тот факт, что в клетках, содержащих мутантные митохондрии, все эти органеллы несут одну и ту же мутацию и мутантные митохондрии полностью вытесняют все нормальные, доказывал неверность этого положения.

    Единственной разумной альтернативой представлялась "клональная экспансия": в одной митохондрии происходит негативное изменение, и ее потомки мало по малу занимают всю клетку. Вспомним, что митохондрии размножаются делением на две части наподобие амеб: в "родительской" органелле копируется ДНК, так что образуются две идентичные копии исходного материала и соответственно два идентичных потомка, каждый из которых несет точную копию и всякой мутации, имевшейся в "родительской" органелле. Поэтому представлялось несомненным, что "клон" одинаковых мутантных митохондрий в клетке является продуктом одной митохондрии, в которой произошла данная мутация и которая передала ее своему потомству, вытеснившему все прочие митохондрии и занявшему все их места.

    Однако парадоксальна сама мысль о том, что митохондрии с мутантной ДНК каким-то образом завоевывают доминирующее положение в клетке. Ведь эти органеллы так или иначе дефектны, в их ДНК из-за свободнорадикальной атаки или из-за ошибки репликации не хватает одного или более крупных участков. Хотя изредка мутации оказываются полезными - иначе не шла бы эволюция - крайне маловероятно, чтобы такое событие случалось снова и снова, и чтобы в результате случайных мутаций в далеко не рядом находящихся клетках определенная митохондрия получала дарвиновское приспособительное преимущество над другими митохондриями. И таки известно, что наблюдаемые в митохондриях мутации вредоносны: они полностью лишают органеллу способности осуществлять окислительное фосфорилирование и тем самым - обеспечения аденозинтрифосфатом.

    Идея "клональной экспансии" также плохо согласуется с тем фактом, что многие различные мутации могут вызывать вытеснение какими-то определенными митохондриями всех прочих. В то время как в пределах одной и той же клетки все мутантные митохондрии содержат одну и ту же специфическую мутацию, в другой подобной клетке могут быть митохондрии, содержащие совершенно другую мутацию.

    Выходило, что есть не одна специфическая мутация, дающая мутантной митохондрии селективное преимущество, а множество мутаций, возникших независимо в единичных митохондриях в далеко находящихся друг от друга клетках, несут ту же конкурентоспособность.

    Все эти различные мутации имели нечто общее. Они вызывают не умеренные изменения, повреждая какой-то один белок, - все они принадлежат к типу мутаций, результатом которых является прекращение синтеза всех 13 белков, кодируемых митохондриальной ДНК. Вот это общее свойство и могло быть ключом к ответу на вопрос, почему мутантным митохондриям удается доминировать.

    Чем же такие митохондрии отличаются от обычных, нормальных? Они, ясное дело, не производят много АТР, давая клетке только небольшое количество энергии за счет начальных этапов извлечения химической энергии из питательных веществ; это количество составляет лишь часть того, что дает функционирующая система окислительного фосфорилирования. Такое положение, разумеется, плохо для клетки, но мало повлияет на саму митохондрию, которая в норме отдает практически весь продуцируемый ею аденозинтрифосфат. При сокращении отдачи энергии мутантная митохондрия имеет селективное преимущество, было ясно, что - вопреки первому впечатлению - сокращение отдачи энергии на деле не является прямым недостатком по сравнению с другими митохондриями данной клетки, который мог бы помешать доминированию.

    Другое отличие митохондрии, не способной к окислительному фосфорилированию, от других митохондрий в пределах клетки представлялось более похожим на преимущество: в такой митохондрии больше не образуются свободные радикалы. Напомню, что свободные радикалы возникают при утечке электронов в регулируемых каналах, по которым идет поток протонов в "резервуары", движущий "турбины" во внутренней мембране митохондрий. Если сама система протонных насосов отсутствует, то и утечки никакой нет - и нет свободных радикалов.

    Отсутствие необходимости справляться с постоянным свободнорадикальным разрушением представляется полезным для митохондрии, но неясно, как именно оно ведет к конкурентному преимуществу по сравнению с окружающими нормальными органеллами. Правда, прекращается бомбардировка ДНК, но она к этому моменту уже повреждена (делецией).

    Ясно также, что внутренняя мембрана митохондрии более не испытывает атак свободных радикалов, но опять же это, по-видимому, не имеет значения для старения, так как в митохондриях мембраны в любом случае постоянно рвутся и заменяются, будь то во время репликации или под конец их краткой индивидуальной жизни, когда митохондрия с дефектными мембранами отправляется в клеточную "печь для сжигания мусора".
    Реутилизация отходов
    Что заставляет митохондрии отправляться в клеточную систему утилизации отходов? Чтобы точно ответить на этот вопрос, требуется еще много работы. Тем не менее, уже тогда, когда Алекс Камфорт критиковал теорию старения, базирующуюся на образовании свободных радикалов в митохондриях, бытовало мнение, что существует некий избирательный процесс, специфически отмечающий старые, поврежденные органеллы для разрушения. Но эту точку зрения нельзя принимать на веру без доказательств. Долгое время считалось, что некоторые компоненты клетки находятся в кругообороте постоянного процесса случайной реутилизации: лизосомы (точнее, особая разновидность предшественников лизосом, называемая аутофагосомами, или аутофаговакуолями), циркулируя по клетке, поглощают различные клеточные компоненты, хватая что попадется, просто набирая случайным образом определенное количество материала, так что рано или поздно всякая структура клетки включается в круговорот и обновляется.

    Но теперь более распространено иное представление: лизосомы поглощают белки и другие клеточные компоненты целенаправленно. Отчасти это просто способ использования скудных ресурсов. Представим себе, что для сборки старых разрушающихся транспортных средств с дорог (для уменьшения загрязнения воздуха; сокращения выделения в атмосферу газов, усугубляющих парниковый эффект; благоустройства территорий; снижения цен на металлы благодаря их реутилизации), власти рассылают по стране специальных агентов, которые, нецеленаправленно осматривая небогатые районы, случайным образом отбирают машины для отправки на свалку. Такая деятельность дала бы кое-какие результаты, но было бы зря уничтожено много вполне работоспособных автомобилей (даже если не касаться вопроса о праве частной собственности).

    medbe.ru

    e-news.com.ua

    Внимание!!! При перепечатке авторских материалов с E-NEWS.COM.UA активная ссылка (не закрытая в теги noindex или nofollow, а именно открытая!!!) на портал "Деловые новости E-NEWS.COM.UA" обязательна.



    При использовании материалов сайта в печатном или электронном виде активная ссылка на www.e-news.com.ua обязательна.