Одной из своих ошибок Эйнштейн сам называет введение космологической постоянной в свои уравнения. Ускоренное расширение Вселенной в первом приближении неплохо описывается космологической постоянной в уравнении Эйнштейна
Первые результаты масштабного исследования далеких сверхновых звезд (SNLS) показывают, что ускоренное расширение Вселенной в первом приближении неплохо описывается космологической постоянной в уравнении Эйнштейна, введение которой сам ученый называл своей "величайшей ошибкой", пишет sunhome.ru
Расширение
О том, что Вселенная расширяется, мы знаем из теоретических выкладок Александра Фридмана и наблюдений Эдвина Хаббла. Фридман в 1922-24 годах предложил модель нестационарной Вселенной, основываясь на решении уравнений общей теории относительности Эйнштейна, а Хаббл в 1929 году обнаружил, что галактики удаляются от нас тем быстрее, чем дальше они находятся (закон Хаббла), то есть наблюдаемая Вселенная расширяется.
Предсказать нестационарность Вселенной вполне мог сам Эйнштейн. Собственно, он обнаружил в 1917 году, что его уравнения, будучи применены ко всей Вселенной в целом, предсказывают, что она должна сжиматься за счет самогравитации материи и энергии. Однако идея эволюционирующей Вселенной шла настолько вразрез с представлениями того времени, что Эйнштейн отбросил ее и ввел в свои уравнения специальный параметр, компенсирующий тяготение в космологических масштабах и обеспечивающий стационарность Вселенной. Этот параметр, получивший название космологической постоянной, проявлялся как очень слабое отталкивание любых двух масс, растущее с расстоянием.
Позднее, когда факт расширения Вселенной стал общепризнанным, Эйнштейн говорил, что введение в уравнения общей теории относительности космологической постоянной было самой большой ошибкой в его жизни, поскольку не позволило ему предсказать нестационарность Вселенной.
Долгое время космологическую постоянную игнорировали, считая просто забавным казусом и приравнивая к нулю. В этом случае расширение Вселенной, продолжающееся "по инерции" с момента Большого взрыва, должно постепенно замедляться за счет гравитации. Классическим стало обсуждение, сумеет ли тяготение остановить и повернуть вспять расширение Вселенной или плотности материи для этого не хватит.
Ускорение
И вот в 1998 году неожиданно появляются наблюдения, которые убедительно показывают, что Вселенная расширяется не с замедлением, а с ускорением! Первоначально вывод об ускоренном расширении Вселенной был сделан из анализа излучения далеких сверхновых звезд типа Ia. Светимость этих сверхновых звезд в максимуме блеска примерно одинакова и очень велика. Поэтому их можно использовать для оценки расстояния до далеких галактик. Группа под руководством Сола Перлмуттера (Saul Perlmutter) обнаружила, что далекие сверхновые выглядят немного слабее, чем должны в случае, если космологическая постоянная равна нулю.
Естественно, это сенсационное открытие стали тщательно проверять и уточнять. Ускорение расширения Вселенной при этом уверенно подтверждалось. Но вместе с тем начали обнаруживаться странности. Стало складываться впечатление, что характер этого ускорения не остается постоянным во времени. А такое меняющееся ускорение уже нельзя объяснить введением космологической постоянной в уравнение Эйнштейна, поскольку она перестает быть постоянной и становится функцией времени.
Оставайся космологическая антигравитация во Вселенной постоянной, можно было бы просто ввести в уравнения ненулевую космологическую постоянную, а ее конкретное значение признать наблюдаемым фактом. Но переменность этой величины во времени требовала какой-то физической модели, объясняющей природу сил отталкивания. Именно с этого момента стали всё меньше говорить о космологической постоянной и всё больше о некой темной энергии или квинтеэссенции, которая заполняет все пространство Вселенной и, расширяясь вместе с ней, меняет свойства, а вместе с ними и силу отталкивания. Смысл этой конструкции был в том, чтобы дать какое-то физическое объяснение тому, что космологическая антигравитация меняется во времени.
К сожалению, теоретические модели темной энергии очень трудно проверить экспериментально. Но астрономов-наблюдателей трудности теоретиков смущают в последнюю очередь. Крупный международный проект Supernovae Legacy Survey (SNLS), стартовавший в 2003 году, ставит своей целью собрать детальную информацию об особенностях расширения Вселенной. Достичь этого планируется за счет открытия в течение 5 лет около 700 далеких сверхновых звезд.
Таким образом, новые результаты могут неожиданно закрыть вопрос о природе темной энергии, вернув космологов к вопросу об определении значения космологической постоянной. Если это случится, то "величайшая ошибка Эйнштейна" может в третий раз обрести полноценные права гражданства в космологии. Но, конечно, чтобы говорить об этом уверенно, нужно дождаться окончательных результатов обзора SNLS, которые в 2-3 раза повысят точность полученных на сегодня оценок.
e-news.com.ua